Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis.

نویسندگان

  • W M Muir
  • R D Howard
چکیده

Widespread interest in producing transgenic organisms is balanced by concern over ecological hazards, such as species extinction if such organisms were to be released into nature. An ecological risk associated with the introduction of a transgenic organism is that the transgene, though rare, can spread in a natural population. An increase in transgene frequency is often assumed to be unlikely because transgenic organisms typically have some viability disadvantage. Reduced viability is assumed to be common because transgenic individuals are best viewed as macromutants that lack any history of selection that could reduce negative fitness effects. However, these arguments ignore the potential advantageous effects of transgenes on some aspect of fitness such as mating success. Here, we examine the risk to a natural population after release of a few transgenic individuals when the transgene trait simultaneously increases transgenic male mating success and lowers the viability of transgenic offspring. We obtained relevant life history data by using the small cyprinodont fish, Japanese medaka (Oryzias latipes) as a model. Our deterministic equations predict that a transgene introduced into a natural population by a small number of transgenic fish will spread as a result of enhanced mating advantage, but the reduced viability of offspring will cause eventual local extinction of both populations. Such risks should be evaluated with each new transgenic animal before release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes).

Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in tr...

متن کامل

Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo.

The development of crops genetically engineered for pathogen resistance has raised concerns that crop-to-wild gene flow could release wild or weedy relatives from regulation by the pathogens targeted by the transgenes that confer resistance. Investigation of these risks has also raised questions about the impact of gene flow from conventional crops into wild plant populations. Viruses in natura...

متن کامل

Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish.

Genetically modified (GM) strains now exist for many organisms, producing significant promise for agricultural production. However, if these organisms have some fitness advantage, they may also pose an environmental harm when released. High mating success of GM males relative to WT males provides such an important fitness advantage. Here, we provide documentation that GM male medaka fish modifi...

متن کامل

High opportunity for postcopulatory sexual selection under field conditions.

In polygamous systems, male fitness is determined not only by mating success but also by fertilization success. Despite the growing interest over the past several decades in postcopulatory sexual selection, its relative importance compared to precopulatory sexual selection remains a subject of debate. Here, we use extensive behavioral observations of a seminatural population of Hawaiian swordta...

متن کامل

Male mating strategy and the introgression of a growth hormone transgene

Escaped transgenic organisms (GMO's) may threaten the populations of their wild relatives if able to hybridize with each other. The introgression of a growth enhancement transgene into a wild Atlantic salmon population may be affected by the transgene's effects not only on fitness parameters, but also on mating behaviour. Large anadromous GMO males are most preferred in mating, but a transgene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 24  شماره 

صفحات  -

تاریخ انتشار 1999